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Abstract Using l i e  group methods  and^ the Painlev6 rest, we analyse nonlinear diffusion 
reaction equations ut = V ( D ( u ) V u )  + f(u) with power law dfiusion wefficients 
(D N U") and arbitrary nonlinear reaction terms f(u) which have a wide spedrum 
of applications in many areas of science. The Liegroupbased similarity method leads 
to a classification of the reaction terms according to its symmeQy properties. With 
the help of the adjoint representation, the optimal system of similarity reductions is 
calculated. To check the integrability of the partial dfterential equation, the existence 
of generalized (Lie-Backlund) symmetries is investigated. Apart fxom three known 
cases, no further cases with third-order symmetries &t. Examining the integrability 
of the sewnd-order ordinary differential equations resulting from the reductions, only 
a few parameter combinations can be found for which the Painlev6 property is given 
However, we are able to construct unknown integrals of motion for a~ much larger range 
of parameter values From the intepls, exact similarity solutions may be derived. This 
is demonstrated by examples wrresponding to the important moving-wave reduction. 

1. Introduction 

An important class of nonlinear evolution equations are the so-called diffusion 
reaction equations 

ut = div[D(u)gradu] + f(u). (1) 

In (l), the first term on the right-hand side describes diffusion with a (generally non- 
constant) diffusion coefficient D(u) ,  whereas the second term, the reaction term, is 
related to source and loss processes. Equation (1) has a wide range of applications 
in physical and related sciences, e.g. in biophysics [1,2], plasma physics [3,4], solid 
state physics [5], hydrodynamics [6] ,  and chemical reactor design [7]. 

In this paper, we will discuss (1) where the diffusion coefficient has a paver law 
dependency 

with real exponent U. The case Y > 0 corresponds to 'slow diffusion', whereas Y < 0 
leads to 'fast diffusion'. The reaction term f(u) in (1) is considered to be a general 

t Present address: Max-Planck-Institut fir Quantenoptik, Ludwig-Randtl-Strasse 10, D-8046 arching. 
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666 H-D Frey 

function of the concentration U. Using the dimensionality parameter X (A = 1,2,3) 
and assuming cylindrical or spherical symmetry for the two- and three-dimensional 
cases, (1) reads 

Equations of the form (3) with f 3 0, so-called nonlinear diffusion equations, were 
recently investigated with respect to Painlev6 property [SI, f i t  integrals [9], and exact 
similarity solutions [8,10-121. In order to study effects resulting from combinations of 
nonlinear diffusion and reaction terms, we will consider U # 0 and f(u) + 0 in (3). 

Section 2 is concerned with the symmetry analysis of (3). The classical similarity 
method [13,14] leads to a classification of the reaction terms f(u). If f(u) is a 
power of U or a combination of a linear term and a term proportional to U”+’, a 
large variety of symmetry transformations is found whereas other forms of f(u) only 
allow translational symmetries. The results presented here are generalizations for 
two- and three-dimensional radial symmetric problems (i.e. X = 2,3) of those given 
by Galaktionov et al [15]. In [E], a symmetry analysis is performed up to the point 
of determining the infinitesimal representation of the symmetry groups in the one- 
dimensional case (A = 1). In the present work, we calculate the symmetry groups for 
all possible values of the dimension X including the corresponding finite symmetry 
transformations which allow the construction of new solutions from known ones. 
Furthermore, by applying the adjoint representation, the appropriate optimal system 
of similarity reductions is determined. The most important differential equations 
resulting from the reductions can be summarized in a general but single equation. A 
useful criterion for integrability of partial differential equations having no Hamiltonian 
structure is the existence of infinitely many Lie-Backlnnd symmetries. For (3) at 
least a third-order Lie-Backlund symmetry must exist. Looking for such generalized 
symmetries, three cases are found which are already known in the literature [6,15]. 

In the remaining part of the paper, the general second-order ordinary differential 
equation resulting from the reductions is investigated in detail. Section 3 deals 
at first with integrability with respect to the Painlev6 property. At the beginning 
of this century, Painlev6 et al (cf [16]) showed that each second-order differential 
equation with the Painlev6 property can be transformed into one of 50 standard 
forms. The general solutions are, according to the definition of the Painlev6 property, 
meromorphic functions of the two integration constants. We determine parameter 
values for which transformation to a standard form is possible and, therefore, an 
explicit general solution is known. It turns out that the Painlev6 properly is satisfied 
only for a small set of parameter values. With the help of the transformation and 
the solution of the standard equation, the general solution of the Painlev6 cases can 
be obtained. Apart from this Painlev6 analysis for ordinary differential equations, 
additionally a Painlev6 test based on the WTC algorithm [17] is carried out for partial 
differential equations of type (3). For the equations under consideration the test 
reveals a negative result. 

Not only for the Painlev6 cases, but also for a much larger class of the second- 
order differential equations, a f i t  integration can be performed. By multiplying the 
equation by a suitable expression and by collecting terms forming a total differential, 
first integrals are constructed. For special values of the integration constant, the 
second integration can be carried out leading to explicit particular solutions with 
one free constant. The second integration for arbitrary values of the integration 
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constant, however, is only possible in a more restricted parameter space. Finally it is 
demonstrated how explicit solutions of (3) are obtained from the first integrals and 
the standard forms. Two examples, both applying to the important reduction with 
the moving-wave variable, are considered. If f(u) = m = constant and Y = -1, 
a pulse-shaped moving-wave solution of (3) is given, depending on three arbitrary 
parameters. The second example deals with a generalization of Fisher's equation. 
The solution is a kink-shaped wavefront with an edge at its front part. 

2. Symmetries and similarity reductions 

Classical similarity analysis [13,14] determines transformations which leave the 
differential equation invariant. In the infinitesimal representation, the corresponding 
generator of the transformation &.written by 

The infinitesimals r,+, and I) of a differential equation A = 0 of the order n are 
calculated from the condition of invariance 

X(n) Ala=o = 0 (9 
in an algorithmic way. In (5), X ( % )  is the nth extension of the generator X .  
The infinitesinah r,c of (3) with non-constant diffusion coefficients (v # 0) are 
listed in table 1 where d,  m, g, U are constants characterizing the reaction term and 
b, c,  le, h, s, p are constants of the symmetry group. The infinitesimal 17 is given by 

17 = m, - r*)U/v .  (6) 
The values v = -4, X = 1 and v = -1, X = 2 play a special role. Their appearance 
is connected with the power law diffusion coefficient D(u)  = U" and they are also 
found in the case of vanishing reaction term f( U) 0. With respect to the reaction 
term, three different types need to be distinguished. Hence, the similarity method 
leads to a classification of the reaction term according to its symmetry properties. 
The three classes of f( U) are given by: 

(i) f(u) = - (d /u )  U + m uY+': these reaction terms allow a large variety of 
transformations. Depending on the dimension X and the values of U, d ,  m (describing 
diffusion and reaction behaviour), symmetry groups with two to five group constants 
emerge; 

(ii) f(u) = gu"fl: here, the symmetry groups depend on 2 or 3 group constants. 
Especially for this reaction term, a scaling symmetry is possible; 

(iii) other f( U): only a small number of allowed transformations exist, leading to 
symmetry groups with 1 or 2 group constants. 

The generators of the symmetry groups of (3) with the corresponding global 
transformations are shown in table 2. The transformations allow the determination 
of new solutions U] (r l ,  t l )  from known solutions U (r, t). Taking the conditions for 
the appearance of the corresponding generators Xi (cf table 2, into account, the 
variables are connected by 

( u I , q ,  tl) = ecXr (u,P,~) . (7) 
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Table 1. Infinitesimals for ut = rl-A [r"-'u"u~], + f(u) 

1 -$  hr2 + a r  i- q 

# -: 

Arbitrary 

2 -1 

2,3 Arbitrary ar 

0 

0 
U - U  

b- r 
2 r  

n Arbitrq  e 

The Lie algebras corresponding to the symmetry groups are characterized by the 
commutators of the generators for the allowed transformations. For reaction terms 
with f(u) = - (d /u )  U+ m uU+I and f(u) = gur+I, the commutators are shown in 
tables 3 and 4, respectively. For any other f(u), there are at most two commutating 
generators X ,  and X,, i.e. [ X I ,  X,] = 0. Here and in the following, the generators 
X,, . . . , X ,  corresponding to rather complicated transformations and appearing only 
for the special parameter combinations X = 1, v = - 4  or X = 2, U = -1 (cf 
table 2) are not considered further. 

From the s generators X i ,  which build up the appropriate symmetry group, a 
general vector field 

can be constructed. For each combination of the coefficients ai, X corresponds to 
an allowed transformation (in infinitesimal representation). The invariants of the 
transformations can be determined by integrating the characteristic equations 

which leads to the similarity variable z = z(7, t )  and defines the connection between 
the similarity function y(z) and the concentration u ( ~ , t ) .  With knowledge of these 
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Table 2. Generatois and one-parameter transformations. 

Generator (u1, TI, t l )  = ccx. (a, r, t )  Conditions 
a .  x, = - at 
a X z =  - a, ~. 

a 
at 

u - ~  a 1 a 
20 ar U au 
a 2 a  
ar Y au 

x 3 = - t -  

+- r- + -U- 
Xa = r- + -U- 

a a Xs=rZ--33u- a7 au 
1 .  a 

X,,, = -sn1(2~)- 
w ar 

3 a =  
--ums(ZT) - 

2 au 
e*-' a x,/, = -- 
iw ar 

--aC*u'- 3 a b  
2 au 

a 
ar Xg = rlnr- 

- 

X = l  

f(u) - U"+1 (U # 0) 

m=O 

4 
X = l ,  U=--, 3 m>O 

x = 2 ,  u = - l ,  m=O 
a 

aU - 3 ( l + h r ) u -  

 an<^, w = m  + = ( w r + l p ) / %  q==rr/2 010. 
bm>O, w =  sf 4m3. 

Table 3. Commutators for f(u) = - ( d / u )  U + muYt' ,  d # 0. XZ appears only for 
X = 1, Xd only for m = 0. 

0 0 xz 0 
x4 0 -x2 0 0  
XS 4x5 0 0 0 

Table 4. Commutators for f(u) = U # 0. X2 appears only for X = 1. 

[ X i , X j l  x, x2 x3 

Xl 0 '  0 -.XI 
XZ 0 0 XZ 

Y - U  - 
20  

xz 0 
U - U  

x3 XI 7 
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Table 5. Similarity variables I and similarity forms for the 10 fundamental vector fields 
of (3). 

(T, t )  U (r, t )  remarks 

XI r Y ( 4  Stationary solution 

x2 t Y b )  Homogeneous solution 

x ] + : x ~  r - - t  B Y(.) Moving-wave solution 
C 

Separation (a = U) 
Scaling solution (a # U) 
(0 = U) 

(a # 4 

dependencies, the partial differential equation (3) for u(r,i) can be reduced to 
ordinary differential equations in y(z). 

Especially for the first two classes of reaction terms f( U) with rich symmetry, a 
large variety of transformations can be formed. A systematic discussion is possible by 
using the method of the adjoint representation outlined by Olver 1141. The adjoint 
representation gives an optimal system of transformations with respect to reductions. 
The procedure is based on the property that transformations of the symmetry group 
transform solutions of the differential equation into solutions. Therefore, it is 
sufficient to consider only reductions which lead to solutions being inequivalent with 
respect to symmetry transformations. By investigation of the various cases of (3), 10 
fundamental vector fields built up from XI, . . . , X ,  are obtained. They are listed 
in table 5, together with the corresponding similarity variables z [and the similarity 

For all combinations of dimension X and reaction terms )(U), the resulting 
fundamental vector fields are listed in table 6 showing the op$mal system of one- 
dimensional subalgebras for each case. The optimal system of reductions is obtained 
by substituting the similarity forms (cf table 5) in the partial differential equation (3). 
In this way, (3) is reduced to an ordinary differential equation (ODE) of the similarity 
function y(z). Solutions y(z) lead by back-substitution to so-called similarity 
solutions u(r , t )  of (3). The resulting ODES are of second order-except for the 
two cases where the fundamental vector fields with z = t lead to a first-order ODE. 
In table 7, the first-order ODES are listed. By separating the dependent and the 
independent variables, they can be reduced to quadrature. For special forms of the 
reaction term f (U) closed-form solutions are attainable. The ODES of second order 
resulting from the reductions have the following general stmcture: 

forms connecting y(z) and u(T,~). / 

(i) for reaction terms f(u) of the fmt two classes 



Generalized dimion reaction equarions 671 

Table 6. Fundamental vector fields for combinations of dimension A and readion terms 
f(U). 

f ( u )  Fundamental vector fields 

1 mU"+1 XI, x2, Xl f x2, x3, x3 + Ex2 

XI, x2, x1+ CX2, x4, XI + 9x4, 

-Ifi+muW+I U X ~ , X ~ , X ~ + Z X ~ , X ~ ,  x ~ ~ x S  

XI, xz, XI + fx2 

U 
d -- 
Y C 

xs, x2 * xs, x4 f xs 

gu"+l XI, x2, x1 XI, x3, x3 f x2 
Other forms 

2 , 3  mu"+I XI, x3 
--U d X1,X~,X1+~X4,XS,X4*XXS.  

--U + muy+' XI, XS 

gU-+l  XI, x3 
Other forms XI 

U 
d 
U 

Table 7. Reductions to ODE of first order. 

4 T 1 t )  f(.) x ODE 

xz Y ( t )  Arbitraryfom 1,2,3 y '= f (Y)  
d 

U Y 
~d 

x4 $ ' " y ( t )  -- 
U 

Table 8. OD6 of second order: parameter values for f(u)  = - ( d / u )  U + mu"+1 
(0 = U # 0, 6 = m). 

where new parameters a, and p are introduced. The parameter 6 is connected to 
the form of the reaction term by 6 = m for U = U and 6 = g for U # v. The 
parameter values for al l  reductions of the optimal system are listed in tables 8 (with 
f(u) = - ( d / v )  U + m uY+') and 9 (with f(u) = g tio+'). 

(io for other reaction terms f(u) 

y" t U - (Y'I2 t [' y -" t 7 y ' t  y-"f(y) = 0 
Y C 2 
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Table 9. ODE of second order: parameter values for f(u) = gu"+l (a # 0,u;  6 = 

x (Y P P 

XI 1,2,3 0 0 
X I * X L  1 fl 0 0 
x3 1,2,3 ( u - v ) / Z u  -u/2u 1 
X3fX2 1 (a-u)/ZLT - v / 2 a  1 

- 

with q ~ 
- 1) = 0, c f 0. In the two equations (10) and (11) all similarity re ctions 

from the optimal system leading to a second-order ordinary differential equation are 
summarized. 

With respect to integrability of nonlinear evolution equations, the existence of 
infinitely many generalized or Lie-B2cklund symmetries is important. Here not 
only transformations of the dependent and independent variables are considered 
but also the derivatives of the dependent variable are viewed to be independently 
transformable [13,14]. This leads to more general transformations than the point 
transformations from the classical symmetries. Instead of (4), the corresponding 
generator is written in the form 

where uj  denotes the j th  derivative with respect to the space coordinate and N is 
the order of the generalized symmetry. The existence of higher-order generalized 
symmetries is usually connected with the existence of a recursion operator relating 
symmetries of different order and therefore, leading to an infinite hierarchy of 
symmetries. This feature is used as criterion for a partial differential equation PDE 
to be integrable or exactly solvable and it seems to be connected with the possibility 
of transforming the nonlinear PDE to a linear one [U, 61. 

For the computation of generalized symmetries from the corresponding invariance 
condition (9, the order N has to be fixed. Following [6] we use N = 2 n  - 1 
where n is the order of the PDE, i.e. N = 3. Apart from the known cases with 
X = 1, U = -2, f(u) = 0 [18,6] or X = 1, U = -2, f(u) = constant or 
X = 1, U = -2, f(u) = constant x U [15], no further thirdader symmetries for 
(3) were found. This indicates that (3) with nonlinear diffusion and a nonlinear 
reaction term does not belong to the class of integrable or exactly solvable evolution 
equations. 

3. Painlev6 analysis, first integrals, and explicit similarity solutions 

In order to solve the nonlinear secondader ODES (10) and (11) resulting from 
similarity reduction, further investigations are necessary. Especially in (Il), the 
undetermined function f(u) occurs, i.e. knowledge about the reaction processes 
is necessary before solving it. Instead of considering special models for f(u) in (ll), 
we will focus our attention on (IO) which applies to the fmt two classes of reaction 
terms, that is f(u) = -(d/v)u + muYt1 and f(u) = gu0+'. 

Since (10) is a nonlinear differential equation, only for special values of the 
parameters can exact solutions be found. A useful method providing parameter 
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values of integrable cases is the Painlev6 tesi. This test delivers necessary conditions 
for the Painlev6 property which is connected with the existence of the general solution 
in an explicit form [19,20]. An ordinary differential equation is said to possess the 
Painlev6 property if all its solutions are meromorphic functions of the integration 
constants. For second-order differential equations, Painlev6 and colleagues showed 
that every equation for y(z) with the Painlev6 property can be transformed by 

to one of 50 standard forms for W(x) [16]. 44 of the 50 standard equations can 
be solved via a fust integral by well known functions. The remaining six define new 
classes of transcendental functions, the so-called Painlev6 transcendentals. Since (10) 
is a second-order differential equation, we can use the integration theory of Painlev6 
instead of the Painlev6 test. This procedure has two main advantages: firstly, it 
delivers a rigorous result about the Painlev6 property whereas the Painlev6 test only 
provides necessary conditions; and secondly, it leads to the general solution in the 
cases with the Painlev6 property. 

Some sort of branch points in the solution y(z) can easily be removed by a 
transformation 

Y(Z) = GYz) (14) 

of the dependent variable. In this way, $(z)  may possess the Painlev6 property, 
whereas y( z )  does not have the Painlev6 property. Hence, we will look for parameter 
combinations for which j r  possesses the Painlev6 property. A suitable choice of K is 
K = - l /v  leading (10) to 

Especially, if a = p = 0, transformation (14) with r; = l / (v  + l ) ,  (v # -1) leads 
to 

(16) 
$" + ( 7) A - 1  YJ + qv + l)*(.M)/(Utl) = 0 

which is in case of U = v or U = -1 a linear equation. For U # v, (16) is an Emden 
equation (A = 3) or a modified form (A = 1,2) [21,22]. 

Since (15) is of the structure 

with constant L,  the transformation (13) must be of the form 

Y(Z) = P I ( Z ) W ( Z )  + PZ(Z) 2 = + ( f ) .  (18) 

For simplicity's sake, we will assume P2 0 in (18). From an extensive discussion, it 
follows that the more general case with arbitruy P2 does not lead to further Painlev6 
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cases for (15) with the admissible parameter values. Thus, the assumption Pz 0 is 
not a restriction for the equations under consideration. By (18) with Pz =_ 0, (15) is 
trmsfonned to 

In order to get one of the 50 standard equations, the coefficients in (19) must have 
special values. Hence, coupled differential equations for PI(.) and +(z) follow. By 
suitable choices of PI and x and for special parameters in (15), standard forms are 
obtained. 

The results are listed in tables 10 and 11. In those cases, (10) can be transformed 
to one of the 50 standard equations (in the notation of [16]). A first integral, 
or the general solution of the standard equations is given in [16]. Thus, for the 

Table 10. painlev6 property of (15): parameter values, hansformations and corresponding 
standard forms for f(u) = - ( d / u )  U + (U = U # 0, 6 = m). 

2 1,2,3 - f  0 1 -  
CY2 

1 - 2  4 - X  4 1 1  
01 

0 

0 1 1  

x 

-a 1,2 ,3  -1 
2 

-01 1,2,3 -; 
ph 

# O  0 1 -; 0 0 1  

0 # O  1 -4 0 - *1 

1 -1 Arbitrary 0 e x p ( - z z 2 )  6 

1 
1 
9 
2 

8 
26 
3 8  
3 

2 8  
6 

5 8  

- 1 -1 0 

2 -1 0 - -  
- -- 1 -; 0 

1 -x 

1 -3 a 

1 -: # O  

- -  # O  2 

- -- 4 

- -- 

0 0 1,2,3 -1 Arbitrary - exp(-g) 

V 

V 

V 

XIV 

V 

XIV 

I1 

XI1 

XI1 

XVIII 

XIX 

XXI 

XXIII 

XI 
1,2 ,3  # -1 Arbitrary - - - Linear ODE 
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Table 11. Painlev6 pooperly of (15): parameter values, hamformations and corresponding 
standard forms for f(u) = guU+' (e # 0, v; 6 = g # 0). 

a a x  U U 6 U A(=) 2 f z )  Standard form 

$2 0 

-+2 0 

- -2.22 0 

u2 0 

# O  0 1 -! 
2 1 -2  

1 -; 
1 -5  

1 -1 -3 ,441  # O  - 
2 -1 -3,-2,l # O  - 

n + l  n n 1 
n + l  n + l  (n+2)' 

i -2d 0 3 
5 

0 0 1  -; i - # O  1 

- 1 -: - s  # O  
1 -f f 
1 -5 -2 2 

1 , 2 3  f -1  # U  Arbitrary - 

310 
110 
1 

1 
1 

1 

1 

1 
- 

I 

In z 
L 

VI 
X 
XXIV 

XXVIII 
m 
w 
w 
XI1 
XYiI 
XXIX 

-1 

Mod. Emden 

parameter values listed in tables 10 and 11, the explicit general solutions are known. 
A large variety of integrable cases are due to a = p = 0, i.e. reductions where 
the similarity variable z is the space variable T. If the reaction term is given by 
f(u) = - (d /v )u  + muU+l, the similarity reductions.can be transformed to a linear 
equation (v # -1) or to the standard form Xi (v = -1). In the other case in 
which f(u) = Suo, an Emden equation or a modified Emden equation is obtained 
for Y # -1. Apart from the cases with a = p = 0, the transformation to standard 
form is only possible for a few, very special parameter combinations. Restrictions 
have to be applied on both the parameters occnring in the differential equation, and 
the group parameter of the similarity reduction. Further, all of those Painlev6 cases 
correspond to processes with 'fast diffusion' where Y < 0. 

A definition of the Painlev6 property for PDE and a corresponding Painlev6 
test was proposed by Weks et al [17]. A PDE is said to have the Painlev6 
property if its general solution is single-valued about an arbitrary singular manifold. 
Performing this type of Painlev6 test to the reaction diffusion equation (3) with 
f ( u )  = -(d/v)u + or f(u) = gzL0t1, we can take the invariance of the 
Painlev6 property under similarity reductions [8] into account. Therefore, only such 
parameters leading to Painlev6 type ODE by similarity reduction have to be considered. 
It turns out that the Painlev6 test of the PDE fails for all values of X,v,d,m,u, 
and g. Hence, although the PDE does not possess the Painlev6 property and is thus 
supposed to be not integrable, similarity reductions with the Painlev6 property exist. 
We note that the cases admitting an infinite number of Lie-Backlund symmetries 
do not possess the Painlev6 property but some sort of weak Painlev6 property [ZO] 
with half-integer resonances indicating that the original Painlev6 property is a too 
restrictive criterion for integrability even in the area of PDE. 

Apart from the Painlev6 cases, there are further combinations of the parameters 
in (10) for which first integrals exist. In order to find first integrals, we multiply (10) 
by h ( z ) y Z Y y ' +  g(z)y"' with arbitrary functions g ,  h and arbitrary y, Collecting the 
term which form a total differential, we find an integral if the other terms cancel 
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Table 12. First intepals of (IO): parameters for which a fust intepal C exists (a # 0). 

Y U P A  B 6 dz) C 

Arbitrary -1 0 1 0 Arbitrary 1 (21) 
1 1,2,3 - w a  Arbitrary I 01 

(22) 
1 1,2,3 -- Xva  Arbitrary +l 

2 

4BZ 
a 2 w 2 ( w  + 1) Arbitrary - # -1 v 0 1  

1 1,2,3 -ua  0 I 

Xva  0 zA--l 1 1,2,3 -- 
? 

out. To reduce the cases which have to be discussed, we do not consider cases with 
a = P = 0, U = -1 and a = ,B = 0, U = v. They can either be tranformed by 
y = f ~ ~ / ( ~ ~ ~ )  to a linear equation (v # -1) or be reduced to standard equation XI 
of [16] (v = -1) which is completely integrable, too. 

In the case of h(z )  0 integrals of the form 

for U = v f -1, 

for U = -1, Y f -1, and 

g‘(z)) log(y) + az’g(z)y + 6 Jz g ( E ) d f  (22) 

for U = v = -1 are found where the admissable parameters and the function g(z) 
are given in table 12. If g(r) 0, the integral 

is obtained for a = 0 and X = 1. In (23) a logarithmic term occurs instead of 
the power term for v = -2 or v = -2 - U,  i.e. when the denominator vanishes. 
With g(z) + 0 and h ( r )  $ 0 two further combinations of parameters possessing 
a fist integral can be detected. Both are related to v = -1 and A = 2. For 
a = 0, U = v = -1, X = 2, 6 = 0, the integral reads 

c = 42y-ZyQ + 2zy-’y‘ + 2 p 2 y  (24) 
and in case of a = p = 0, v = -1, U + -1, X = 2, 

O t 1  1 2 -2 I2 c = - r y  y +- 
2 0 + 1  

2 zy-$4’ + 6z=- 
u + l  

is obtained. 
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By comparison with the Painlev6 cases (tables 10 and U), we note that for all 
cases with Paideve? property a first integral can be found by using this direct method. 
The only exceptions are the cases with a f 0, p = 0. There, the integrals have a 
different structure which is not within reach of the ansatz. However, in this way we 
get first integrals of a wider class of diffusion reaction equations than by Painlev6 
analysis. For example, in case of a # 0, p + 0, integrals are attained for arbitrary 
values of U whereas the Painlev6 property is given only for v = -+ or Y = -1. With 
regard to the first integration of the second-order ordinary differential equation (lo), 
the construction of first integrals covers a larger range of parameter values than the 
Painlev6 analysis. 
On the other hand, the Painlev6 cases allow an explicit second integration, which 

is in general not possible for the first integrals constructed here. Only in some cases 
can the integration be reduced to a quadrature or performed explicitly for arbitrary 
constants C. In many other cases, the second integration can be done for special 
values of the constant C, e.g. for C = 0. 

Next, we will focus our attention on explicit solutions. Because of the large 
number of different cases, it is not advisable to treat every case. Hence, we will 
consider two illustrative examples, for one of which the general solution can be given 
as a consequence of the Painlev6 properly, the other possessing a first integral which 
allows the second integration for the special value C = 0 of the integration constant. 
Although both examples are related to the reduction to the moving-wave variable 
z = r - vt, exact solutions can also be obtained from the above results (tables 5-12) 
for more complicated similarity variables. Comparison with table 8 shows that the 
moving-wave reduction exists only in onedimensional problems (A = 1) and that for 
non-vanishing propagation velocity U = q / c ,  the parameters a # 0 and p = 0 have 
to be used. 

In the Painlev6 cases, a transformation to the standard forms V and XIV is 
possible (table 10). Especially for a = v # 0, p = d / 2  = 0, X = 1, Y = -1, 
equation (10) can be tranformed by y(z) = exp(-SxZ/Z)W(~), I = z to form 
XIV leading to 

U(T, t )  = - 

In (26), erf is the error function, IC the second integration constant, and i = 
a ( r - v t ) -  C/&. For K > 1, solution (26) has the shape of a pulse. Hence, 
(26) is a pulse-like moving-wave solution of the nonlinear diffusion equation (3) with 
v = -1 and f(u) = m = constant. The typical behaviour of this solution is plotted 
in figure 1. 

In the second example, we consider the equation in one space dimension 

U t  = (U”.,), + u(1- U”) (27) 

which is a generalization of the famous Fisher equation describing, e.g., the 
propagation of an advantageous gene in population genetics. By consulting table 12, 
one recognizes that 

+ V Y )  
1 yo+1 

v v f l  
c = exp ( y u y ‘ -  -- 
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Figure 2. Moving-wave solution (29) with 10 = 10 for various values of U. 

is a first integral for a2 = v2 = l / ( u  + l), (U > -1). The second integration cannot 
be performed for arbitrary C. However, for C = 0, the transformation y = g-l lv  
leads to a Riccati equation. Since ~ ( z ,  t)  5 0 solves (27), one 6nds a ki&shaped 
solution 

(1 - exp[uv(z - vt - zO)])'/" x - vt 6 z0 

x - vt 2 zo 
(29) U(+, t )  = 

with v2 = l / ( u  + I), (Y > 0) and the integration constant zo. For Y > 1, however, 
(29) is a continuous but, in z -vt = z,, nondfferentiable solution. The moving-wave 
solution (29) of the generalized Fisher equation previously found by Newman [23] is 
plotted in figure 2. 
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